4.7 Article

Single-phase static immersion cooling for cylindrical lithium-ion battery module

期刊

APPLIED THERMAL ENGINEERING
卷 233, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2023.121184

关键词

Battery thermal management; Direct liquid cooling; Static mode; Battery safety

向作者/读者索取更多资源

This work proposes a static flow-based immersion cooling method for a six-cell cylindrical Li-ion battery module, which can limit the temperature below 40 degrees C and exhibit superior cooling capability over air cooling. A three-dimensional numerical model is established to analyze and optimize the cooling system's performance, suggesting a higher cooling rate compared to forced air-cooling. The effects of ambient temperature and liquid volume have also been investigated.
The single-phase immersion cooling is an emerging technology for battery thermal management. Both static-or forced-flow working fluids can be adopted, while the advantages of the static mode are less complexity and low cost. This work proposes a static flow-based immersion cooling method for a six-cell cylindrical Li-ion battery module. The effectiveness of the proposed immersion cooling system is studied at different current rates and compared with conventional air-cooling methods. Experiments find that the maximum cell temperature (Tmax) appears at the end of discharge, and it increases with the C-rate. The proposed immersion cooling system can limit the Tmax below 40 degrees C and temperature gradient within 3 degrees C at 3C discharge, exhibiting a superior cooling capability over air cooling. The three-dimensional numerical model has been established to further analyze and optimize the performance of the proposed immersion cooling system. Modelling suggests that immersion cooling has a maximum cooling rate of 2.7 W for the cell with the highest temperature, which is 50 % higher than the cooling rate of the forced air-cooling system. In addition, the effects of ambient temperature and liquid volume have been numerically investigated. Different cooling regions are defined to evaluate the thermal-management performance of the immersion cooling system. Finally, the cooling efficiency of three different fluids is compared in a 100-cell battery module, which can provide valuable information for battery thermal management and scientific guidelines for applying immersion cooling for batteries in operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据