4.6 Article

On-chip topological THz biosensors

期刊

APPLIED PHYSICS LETTERS
卷 123, 期 3, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0157357

关键词

-

向作者/读者索取更多资源

On-chip terahertz (THz) biosensors have potential for real-time, label-free, and noninvasive detection of proteins, DNA, and cancerous tissue. However, high absorption of THz waves by water necessitates evanescent field-based biosensing. A topological waveguide cavity system with topologically protected propagating interfacial modes is shown to enhance on-chip THz biosensing by accurately detecting minute frequency shifts over extended periods, facilitating real-time sensing and monitoring of biological matter.
On-chip terahertz (THz) biosensors have enormous potential in advancing the development of integrable devices for real-time, label-free, and noninvasive detection of proteins, DNA, and cancerous tissue. However, high absorption of THz waves by water necessitates evanescent field-based biosensing. The conventional on-chip THz biosensors with small mode confinement volumes and scaling sensitivity to defects severely limit the interaction of analyte with the electromagnetic field. Here, we reveal a topological waveguide cavity system with topologically protected propagating interfacial modes, exhibiting evanescent waves with an out-of-plane field extent of 0.3?(0), where ?(0 )is the wavelength corresponding to the cavity resonance frequency. Our experiments involving biomolecule detection and leaf-hydration monitoring show that the near-field of high-Q topological cavity resonances accurately detects minute frequency shifts over extended periods, facilitating real-time sensing and monitoring of biological matter. Implementation of topologically protected evanescent fields in waveguide-cavity systems will enhance on-chip THz biosensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据