4.5 Article

Precise characterization of nanometer-scale systems using interferometric scattering microscopy and Bayesian analysis

期刊

APPLIED OPTICS
卷 62, 期 27, 页码 7205-7215

出版社

Optica Publishing Group
DOI: 10.1364/AO.499389

关键词

-

类别

向作者/读者索取更多资源

Interferometric scattering microscopy combined with Bayesian framework and automatic differentiation technique presents a new method for analyzing interferometric images, enabling the determination of three-dimensional position, polarizability, uncertainties, and correlations of nanoscale systems, as well as inferring their static and dynamic properties.
Interferometric scattering microscopy can image the dynamics of nanometer-scale systems. The typical approach to analyzing interferometric images involves intensive processing, which discards data and limits the precision of measurements. We demonstrate an alternative approach: modeling the interferometric point spread function and fitting this model to data within a Bayesian framework. This approach yields best-fit parameters, including the particle's three-dimensional position and polarizability, as well as uncertainties and correlations between these parameters. Building on recent work, we develop a model that is parameterized for rapid fitting. The model is designed to work with Hamiltonian Monte Carlo techniques that leverage automatic differentiation. We validate this approach by fitting the model to interferometric images of colloidal nanoparticles. We apply the method to track a diffusing particle in three dimensions, to directly infer the diffusion coefficient of a nanoparticle without calculating a mean-square displacement, and to quantify the ejection of DNA from an individual lambda phage virus, demonstrating that the approach can be used to infer both static and dynamic properties of nanoscale systems. (c) 2023 Optica Publishing Group

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据