4.7 Article

Vibration analysis of radial tire using the 3D rotating hyperelastic composite REF based on ANCF

期刊

APPLIED MATHEMATICAL MODELLING
卷 126, 期 -, 页码 206-231

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2023.10.041

关键词

ANCF; 3D-RHCREF; Hyperelastic composite; Vibration characteristics

向作者/读者索取更多资源

A 3D rotating hyperelastic composite REF model was proposed to analyze the influence of tread structure and rotating angular speed on the vibration characteristics of radial tire. Nonlinear dynamic differential equations and modal equations were established to study the effects of internal pressure, tread pressure sharing ratio, belt structure, and rotating angular speed on the vibration characteristics.
In order to analyze the influence of tread structure and rotating angular speed on the vibration characteristics of radial tire, a 3D rotating hyperelastic composite REF (3D-RHCREF) model is proposed. Different form uniform cylindrical tread in other REF models, the tread is simplified as a hyperelastic composite revolving shell, whose discretization and parameterization are achieved by using three-order segmented Be ' zier curve and complete-gradient ANCF space curved trapezoid element. In the proposed 3D-RHCREF, the generalized inertial force with the centrifugal force and Coriolis force are obtained by introducing a rotation matrix into the framework of ANCF. Based on Kirchhoff-Love theory and hyperelastic constitutive relation, the generalized hyperelastic force of composite tread is derived and the compensation of initial generalized hyperelastic force is proposed. According to the D'Alembert principle, the nonlinear dynamic differential equations are established, then the modal equations are derived on the basis of the equilibrium position. By comparing with the FEM model of radial tire, the validity of the proposed model and calculation method is verified. The 3D-RHCREF is used to analyze the influences of internal pressure, tread pressure sharing ratio, belt structure and rotating angle speed on the vibration characteristics of radial tire. The vibration frequency will increase with the increase of internal pressure and the decrease of tread pressure sharing ratio; different belt structures of tread will cause changes in vibration frequency; the radial vibration frequency will be split into two traveling wave frequencies in two directions with the increase of rotating angular speed, and the circumferential/ lateral vibration frequencies will almost only increase slightly with the increase of rotating angular speed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据