4.8 Article

Optimal dynamic power allocation for electric vehicles in an extreme fast charging station

期刊

APPLIED ENERGY
卷 349, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2023.121497

关键词

Battery energy storage; Charging; discharging control; Constraint deep deterministic policy gradient; Electric vehicle; Extreme fast charging station; Power allocation

向作者/读者索取更多资源

This paper proposes a collaborative policy based on Markov Decision Process for real-time allocation of electric vehicle charging power and battery energy storage system discharging power control, in order to integrate extreme fast charging stations with the power distribution network without negatively impacting service quality.
With the ever-increasing penetration of electric vehicles (EVs), extreme fast charging stations (XFCSs) are being widely deployed, wherein battery energy storages (BESs) are also installed for reducing the peak charging power. However, integrating the XFCS with a high-capacity power converter into the power distribution network (PDN) is difficult and uneconomical due to the restrictions regarding urban planning and high investment in PDN expansion. Considering the fluctuation in the EV charging demand and the limited capacity of the power converter, a collaborative policy for real-time EV charging power allocation and BES discharging power control is proposed based on Markov Decision Process (MDP), which is solved by the constraint deep deterministic policy gradient (CDDPG). The proposed model makes it possible to integrate the XFCS with reduced capacity power converter into the PDN with a minimal negative impact on the quality of service (QoS) of EV owners. Finally, the experimental evaluation with real-word data sets demonstrates that the proposed approach is more effective than benchmark methods in dynamically allocating charging power for XFCS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据