4.8 Article

Optimal multi-energy portfolio towards zero carbon data center buildings in the presence of proactive demand response programs

期刊

APPLIED ENERGY
卷 350, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2023.121806

关键词

Sustainable planning; Integrated energy systems; Data center building; Zero carbon; Renewable energy

向作者/读者索取更多资源

This paper proposes an optimal multi-energy portfolio for zero carbon data center buildings in the presence of proactive demand response programs. By fully exploiting the complementarities of hydro-solar-wind hybrid renewable energy sources and modeling them as 100% renewable energy hubs, the paper achieves efficient utilization of energy in data center buildings.
Multiple geographically dispersed data center buildings have been increasingly positioned in renewable-rich areas due to their high energy consumption. This paper proposes an optimal multi-energy portfolio for zero carbon data center buildings in the presence of proactive demand response programs. In the data center buildings, the complementarities of hydro-solar-wind hybrid renewable energy sources (RESs) are fully exploited via multi-energy conversion and storage devices, which are modeled as 100% renewable energy hubs for zero carbon multi-energy supplies. In order to exploit the hub-internal operational dispatchability and flexibility, a comprehensive energy consumption model of data center buildings is proposed to facilitate the demand response in terms of available serves, while the variable speed pumped storage (VSPS) is modeled to capture its dynamic operational characteristics. The energy-carbon production, conversion, storage, and consumption are formulated as an energy-carbon matrix, which are solved via a two-stage method to obtain the optimal portfolio. Case studies on southwest China data center buildings are implemented to demonstrate the effectiveness and superiority of the proposed methodology on cost-effective accommodation of RESs. Simulations results show that the system portfolio cost can be reduced by at most 17.8% with a higher operational flexibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据