4.8 Article

A redox model for NO oxidation, NH3 oxidation and high temperature standard SCR over Cu-SSZ-13

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 328, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2023.122524

关键词

Selective catalytic reduction; Kinetic model; Hydrothermal aging; Cu-zeolites; Br onsted acid sites

向作者/读者索取更多资源

A kinetic model is developed to predict the influence of temperature and hydrothermal aging on the redox of active Cu sites on a Cu-SSZ-13 catalyst. The model calculates the rate parameters associated with NO and NH3 reduction reactions based on the production of NO2 and N2 during titration experiments. It also predicts the transient and integral N2 formation during exposure of CuI sites to a mixture of NO and O2.
A kinetic model is developed to predict the influence of temperature and hydrothermal aging on the redox of active Cu sites under standard SCR, NO oxidation and NH3 oxidation conditions over a practically relevant fullyformulated Cu-SSZ-13 catalyst. NO2/N2 production during NO/NH3 titration of CuII sites is utilized to identify rate parameters associated with NO-only RHC (reduction half cycle) and NH3-only RHC respectively. Integral N2 formation during subsequent NO + NH3 titration is consistent with the production of one NO2 per two CuII sites reduced during NO-only RHC and one N2 per six CuII sites reduced during NH3-only RHC. Decreased reduction of CuII sites by NO/NH3 upon hydrothermal aging, along with the production of one NO2 per two CuII sites during NO-only RHC, is accordant with the involvement of proximal ZCuOH and oxygen-bridged dimeric CuII sites. Oxidation of partially solvated and framework coordinated ZCu (CuI) sites occurs in presence of O2, does not produce N2 and can lead to the consumption of Bronsted acid sites. A global OHC kinetic model is developed to predict transient and integral N2 formation during exposure of CuI sites to a mixture of NO and O2. The resulting redox kinetic model quantitatively predicts NO and NH3 consumption during isothermal transient response Cu redox (TRCR) protocols, along with temperature and age dependent steady-state standard SCR and oxidation conditions. The redox model presented in this work synthesizes recent kinetic, spectroscopic and computational findings to provide a foundational description of active site redox during standard SCR, NO oxidation and NH3 oxidation over Cu-SSZ-13.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据