4.8 Article

Integrated Protein Solubility Shift Assays for Comprehensive Drug Target Identification on a Proteome-Wide Scale

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.3c00072

关键词

-

向作者/读者索取更多资源

This article introduces a new protein target identification method, ipHSA, and compares it with other methods. It also proposes an integrated method, IPSSA, that improves the sensitivity of target identification.
Target proteins are often stabilized after binding with a ligand and thereby typically become more resistant to denaturation. Based on this phenomenon, several methods without the need to covalently modify the ligand have been developed to identify target proteins for a specific ligand. These methods usually employ complicated workflows with high cost and limited throughput. Here, we develop an iso-pH shift assay (ipHSA) method, a proteome-wide target identification method that detects ligand-induced protein solubility shifts by precipitating proteins with a single concentration of acidic agent followed by protein quantification via data-independent acquisition (DIA). Using a pan-kinase inhibitor, staurosporine, we demonstrated that ipHSA increased throughput compared to the previously developed pH-dependent protein precipitation (pHDPP) method. ipHSA was found to have high complementarity in staurosporine target identification compared with the improved isothermal shift assay (iTSA) and isosolvent shift assay (iSSA) using DIA instead of tandem mass tags (TMTs) for quantification. To further improve target identification sensitivity, we developed an integrated protein solubility shift assay (IPSSA) by pooling the supernatants yielded from ipHSA, iTSA, and iSSA methods. IPSSA exhibited increased sensitivity in screening staurosporine targets by 38, 29, and 38% compared to individual methods. Increasing the number of replicate experiments further enhanced the sensitivity of target identification. Meanwhile, IPSSA also improved the throughput and reduced the cost compared with previous methods. As a fast and efficient tool for drug target identification, IPSSA is expected to have broad applications in the study of the mechanism of action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据