4.7 Article

Fabrication of magnetic magnesium oxide cleanup adsorbent for high-throughput pesticides residue analysis coupled with supercritical fluid chromatography-tandem mass spectrometry

期刊

ANALYTICA CHIMICA ACTA
卷 1265, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aca.2023.341266

关键词

Complex matrix; Multi-pesticide residue; Magnetic magnesium oxide (Fe3O4-MgO); Supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS)

向作者/读者索取更多资源

A rapid and accurate analytical method was developed for multiple pesticide residues in complex matrices using magnetic dispersive solid phase extraction (d-SPE) and supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). By using Fe3O4-MgO coupled with PSA and C18 as d-SPE purification adsorbents, efficient removal of interferences in complex matrix was achieved. The proposed method showed good linearity, satisfactory recovery, and wide applicability for pesticide residue analysis in complex samples.
A rapid and accurate analytical method was established for multiple pesticide residues in complex matrices based on magnetic dispersive solid phase extraction (d-SPE) and supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). To develop an efficient magnetic d-SPE method, magnetic adsorbent modified with magnesium oxide (Fe3O4-MgO) was prepared via layer-by-layer modification and used as cleanup adsorbent for removal of interferences that contain a large number of hydroxyl or carboxyl groups in the complex matrix. The obtained Fe3O4-MgO coupled with 3-(N,N-Diethylamino)-propyltrimethoxysilane (PSA) and octadecyl (C18) were used as d-SPE purification adsorbents and their dosages were systematically optimized with Paeoniae radix alba as the matrix model. Combined with SFC-MS/MS, rapid and accurate determination of 126 pesticide residues in the complex matrix was achieved. Further systematic method validation showed good linearity, satisfactory recovery, and wide applicability. The average recoveries of the pesticides at 20, 50, 80, and 200 mu g kg(-1) were 110, 105, 108, and 109%, respectively. The proposed method was applied to complex medicinal and edible root plants, such as Puerariae lobate radix, Platycodonis radix, Polygonati odorati rhizoma, Glycyrrhizae radix, and Codonopsis radix. The average recoveries of the pesticides at 80 mu g kg(-1) in these matrices were 106, 106, 105, 103, and 105%, respectively with an average relative standard deviation range of 8.24-10.2%. The results demonstrated the feasibility and wide matrix applicability of the proposed method, which is promising for pesticide residue analysis in complex samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据