4.5 Article

Sparse Pressure-Based Machine Learning Approach for Aerodynamic Loads Estimation During Gust Encounters

期刊

AIAA JOURNAL
卷 -, 期 -, 页码 -

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.J063263

关键词

Hyperparameter Optimization; Aerodynamic Performance; Gradient-Based Design Optimization; Aerodynamic Load Estimation; Sensor Deployment; Gusty Environments; Surface Pressure Measurements; Delta Wing; Multilayer Perceptron; Flow Separation

向作者/读者索取更多资源

This study explores the feasibility of using multilayer perceptron (MLP) for estimating aerodynamic loads in complex gusty environments. The results show that the MLP model is able to accurately estimate the relationship between surface pressure and aerodynamic loads, and reveal the importance of sensors located near the leading edge and nose of the wing.
Estimation of aerodynamic loads is a significant challenge in complex gusty environments due to the associated complexities of flow separation and strong nonlinearities. In this study, we explore the practical feasibility of multilayer perceptron (MLP) for estimating aerodynamic loads in gusts, when confounded by noisy and spatially distributed sparse surface pressure measurements. As a demonstration, a nonslender delta wing experiencing various gusts with different initial and final conditions is considered. Time-resolved lift and drag, and spatially distributed sparse surface pressure measurements are collected in a towing-tank facility. The nonlinear MLP model is used to estimate gust scenarios that are unseen in training progress. A filtering process allows us to examine the fluctuation of the dynamic response from the pressure measurements on the MLP. Estimation results show that the MLP model is able to capture the relationship between surface pressure and aerodynamic loads with a minimum quantity of learning samples, delivering accurate estimations, despite the slightly large errors for the cases at the boundary of the datasets. The results also indicate that the dynamic response of the pressure measurements has an influence on the learning of MLP. We further utilize gradient maps to perform a sensitivity analysis, so as to evaluate the contribution of the pressure data to the estimation of gust loads. This study reveals the significant contribution of the sensors located near the leading edge and at the nose of the delta wing. Our findings suggest the potential for an efficient sensor deployment strategy in data-driven aerodynamic load estimation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据