4.5 Article

Sensitivity-Based Geometric Parametrization and Automatic Scaling for Aerodynamic Shape Optimization

期刊

AIAA JOURNAL
卷 -, 期 -, 页码 -

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.J062661

关键词

Multidisciplinary Design and Optimization; Computational Fluid Dynamics; Geometry Parameterization; Numerical Optimization

向作者/读者索取更多资源

This work proposes a sensitivity-based geometric parametrization approach to improve the convergence speed and effectiveness of aerodynamic shape optimization.
Aerodynamic shape optimization has become well established, with designers routinely performing wing and full aircraft optimizations with hundreds of geometric design variables. However, increased geometric design freedom increases optimization difficulty. These optimizations converge slowly, often taking hundreds of design iterations. In addition, designers have to manually scale design variables through trial and error to achieve a well-behaved optimization problem, which is tedious and time-consuming. In this work, we propose a sensitivity-based geometric parametrization approach that maps the design space onto one better suited for gradient-based optimization while keeping the same optimization problem. At the same time, the process can automatically determine design variable scaling so that the new optimization problem can be solved more effectively. We demonstrate the approach on two aerodynamic shape optimizations and show improved terminal convergence trends compared to the traditional approach, without requiring manual adjustments to the design variable scaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据