4.7 Article

Estimating soil water and salt contents from field measurements with time domain reflectometry using machine learning algorithms

期刊

AGRICULTURAL WATER MANAGEMENT
卷 285, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2023.108364

关键词

Soil water; Soil salt; Soil bulk density; Machine learning; Time domain reflectometry

向作者/读者索取更多资源

Soil water and salt contents are important soil physical parameters that have significant impacts on hydrological, ecological, environmental, and agricultural processes. Time domain reflectometry (TDR) is commonly used to measure in-situ soil water and salt contents, and provide possible solutions to quickly obtain soil bulk density (BD). This study designed different model input schemes and applied machine learning algorithms to accurately estimate various soil properties based on TDR measurements. The results showed the importance of soil particle-size fractions (psfs) in predicting soil properties, and extreme gradient boosting (XGB) and gradient boosting regression tree (GBRT) algorithms demonstrated good robustness and strong learning capacity.
Soil water and salt contents are key soil physical parameters that play a crucial role in soil-related hydrological, ecological, environmental, and agricultural processes. Time domain reflectometry (TDR) is commonly used to measure in-situ soil water and salt contents, and provide possible solutions to quickly obtain soil bulk density (BD). However, the measurement accuracy is greatly influenced by the interaction of soil water and salt contents on the measured soil dielectric constant and electrical conductivity, especially for salinized soils. To accurately estimate the soil gravimetric (GWC) and volumetric (VWC) water contents, soil salt content (TS), and BD based on the TDR measurements, we designed different model input schemes to quantify the effect of different soil factors, and applied eight machine learning algorithms to map the non-linear relationship between model inputs and each target soil property. Results of a case study in Hetao Irrigation District in Northwest China indicated that soil particle-size fractions (psfs) are important inputs to predict all the above soil properties. Furthermore, BD mainly contributes to the prediction of soil GWC, and soil surface temperature (T) is effective in improving the GWC and TS estimations. Among eight machine learning algorithms used, extreme gradient boosting (XGB) and gradient boosting regression tree (GBRT) showed good robustness and strong learning capacity. It is rec-ommended to apply XGB to precisely estimate GWC and BD, which resulted in the coefficients of determination (R2) of 0.80 and 0.69, respectively. On the other hand, GBRT precisely estimated the VWC and TS with R2 of 0.71 and 0.84, respectively. The evaluation of spatial distribution characteristic indicated that it is reliable to obtain the spatial distributions of the above soil properties from the TDR measurements based on the recommended model input schemes and machine learning algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据