4.7 Article

Crop residue retention increases greenhouse gas emissions but reduces chemical fertilizer requirement in a vegetable-rice rotation

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 342, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agrformet.2023.109723

关键词

Agronomic efficiency; Methane; Methanogen; Methanotroph; Nitrous oxide

向作者/读者索取更多资源

Retaining crop residues and reducing chemical fertilizer application can maintain crop yield and agronomic efficiency in a vegetable-rice rotation, but may increase methane emissions during the rice cultivation season.
Retaining crop residues on site after harvesting can maintain soil fertility, reduce fertilizer requirements and restore soil organic carbon on intensively cultivated land. However, how crop residue retention and reduced chemical fertilizer application affect greenhouse gas emissions and crop yield in vegetable-rice rotations is poorly understood. We studied the effect of chemical fertilizer application alone (control, without straw retention), straw retention with 100 % nitrogen fertilizer application (STF) or with three levels of reduced chemical fertilizer application (SFR1, SFR2 and SFR3) in a vegetable-rice rotation in a mesocosm system. In the vegetable season, crop yield was maintained but the agronomic efficiency (AE) was higher in SFR1, SFR2 and SFR3 as compared to STF and the control. In the rice season under flooded condition, the methanogens were higher in SFR1, SFR2 and SFR3 compared to the control, but not different between STF and SFR1. The STF showed higher methane and nitrous oxide emissions, but carbon dioxide emissions and AE remained unaffected compared to the control in the vegetable-rice rotation. The SFR2 and SFR3 treatments maintained crop yields, increased AE, and decreased N2O emissions as compared with STF, but the CH4 emissions were 29.8 % lower in SFR2 than SFR3 in the vegetable-rice rotation. We concluded that straw retention with reduced chemical fertilizer application can maintain crop yield in a vegetable-rice rotation but has the potential to increase CH4 emissions in the rice cultivation season.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据