4.7 Article

Deformation behaviors and energy absorption characteristics of a hollow re-entrant auxetic lattice metamaterial

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 142, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2023.108583

关键词

Hollow lattice; Negative Poisson's ratio; Energy absorption; Numerical simulation

向作者/读者索取更多资源

This study proposes a novel 3D hollow re-entrant auxetic (HRA) lattice metamaterial to enhance energy absorption capacity. The mechanical properties and energy absorption behaviors of the HRA lattice are investigated using an analytical model and finite element method. Compared with the solid re-entrant auxetic (SRA) lattice, the HRA lattice shows an improved specific energy absorption of up to 27.43%. The design parameters of the HRA lattice can be tuned to meet different energy absorption demands.
Designing innovative architected metamaterials with enhanced energy absorption is a long-term pursuit to provide impact protection capacity for human beings and crucial structural components. Numerous natural materials prove that hollow structures present unique combinations of mechanical properties and functionalities with minimal weight cost. Therefore, a novel 3D hollow re-entrant auxetic (HRA) lattice metamaterial is proposed to improve the energy absorption capacity. To investigate the mechanical properties of the HRA lattices, an analytical model based on plastica theory is established to predict the crushing force. The energy absorption behaviors of the HRA lattices under quasi-static crushing load are studied based on finite element method, and the analytical predictions are in good agreement with the numerical simulation results. The analytical model can be used to optimize the appropriate design parameters of the HRA lattice and explain the simulation results in the parametric studies. Compared with the solid re-entrant auxetic (SRA) lattice with the same density, specific energy absorption of the HRA lattice can be improved by up to 27.43%. Finally, a parametric investigation is carried out to comprehend the influences of the length-to-height ratio, the re-entrant angle, the width-to-height ratio, and the wall thickness-to-height ratio on the energy absorption capacity of the HRA lattices. According to various energy absorption demands, the HRA lattices with different energy absorption properties can be designed by tuning these design parameters. This concept of building hollow auxetic lattice metamaterials can open up a new solution to design metamaterials with negative Poisson's ratio effects and enhanced energy absorption for potential engineering applications.(c) 2023 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据