4.8 Article

In Situ Twistronics: A New Platform Based on Superlubricity

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202305072

关键词

graphene; superlubricity; twist interface; twistronics; van der Waals layered materials

向作者/读者索取更多资源

This article reviews the latest advances in in situ twistronics, discussing the underlying superlubricity mechanism and showcasing real-time twistronic testing under a scanning electron microscope. The study shows that the real-time testing technique allows for visualizing and monitoring the interface status. By leveraging the tribological properties of van der Waals layered materials, this novel platform not only improves the fabrication of twistronic devices but also enhances the understanding of interface phenomena. Moreover, this platform holds promising opportunities for integrating twistronics into various mechanical frameworks.
Twistronics, an emerging field focused on exploring the unique electrical properties induced by twist interface in graphene multilayers, has garnered significant attention in recent years. The general manipulation of twist angle depends on the assembly of van der Waals (vdW) layered materials, which has led to the discovery of unconventional superconductivity, ferroelectricity, and nonlinear optics, thereby expanding the realm of twistronics. Recently, in situ tuning of interlayer conductivity in vdW layered materials has been achieved based on scanning probe microscope. In this Perspective, the advancements in in situ twistronics are focused on by reviewing the state-of-the-art in situ manipulating technology, discussing the underlying mechanism based on the concept of structural superlubricity, and exploiting the real-time twistronic tests under scanning electron microscope (SEM). It is shown that the real-time manipulation under SEM allows for visualizing and monitoring the interface status during in situ twistronic testing. By harnessing the unique tribological properties of vdW layered materials, this novel platform not only enhances the fabrication of twistronic devices but also facilitates the fundamental understanding of interface phenomena in vdW layered materials. Moreover, this platform holds great promise for the application of twistronic-mechanical systems, providing avenues for the integration of twistronics into various mechanical frameworks. The burgeoning field of twistronics has been ignited by the straightforward manipulation of interlayer twist between van der Waals layered materials. This perspective highlights the in situ twisting techniques and the underlying superlubricity mechanism, and exemplifies new promising opportunities arising from the intersection of the fields of twistronics, nanotribology, and micro/nano-electro-mechanical systems (MEMS/NEMS), etc.image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据