4.8 Article

Over 18% Efficiency Ternary Organic Solar Cells with 300 nm Thick Active Layer Enabled by an Oligomeric Acceptor

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202304225

关键词

efficiency; oligomer; organic solar cells; ternary blend; thickness tolerance

向作者/读者索取更多资源

Ternary organic solar cells (OSCs) with high thickness tolerance are realized via introducing an oligomer DY-TF as the third component. Upon addition of DY-TF, the crystallinity of the host blend is improved and a well-defined morphology with vertical phase separation is formed, yielding an efficiency of 18.23%, which represents the highest efficiency value for 300 nm-thick OSCs thus far.
The development of high-efficiency thickness-insensitive organic solar cells (OSCs) is crucially important for the mass production of solar panels. However, increasing the active layer thickness usually induces a substantial loss in efficiency. Herein, a ternary strategy in which an oligomer DY-TF is incorporated into PM6:L8-BO system as a guest component is adopted to break this dilemma. The S center dot center dot center dot F intramolecular noncovalent interactions in the backbone endow DY-TF with a high planarity. Upon the addition of DY-TF, the crystallinity of the blend is effectively improved, leading to increased charge carrier mobility, which is highly desirable in the fabrication of thick-film devices. As a result, thin-film PM6:L8-BO:DY-TF-based device (110 nm) shows a power conversion efficiency (PCE) of 19.13%. Impressively, when the active layer thickness increases to 300 nm, an efficiency of 18.23% (certified as 17.8%) is achieved, representing the highest efficiency reported for 300 nm thick OSCs thus far. Additionally, blade-coated thick device (300 nm) delivers a promising PCE of 17.38%. This work brings new insights into the construction of efficient OSCs with high thickness tolerance, showing great potential for roll-to-roll printing of large-area solar cells. Ternary organic solar cells (OSCs) with high thickness tolerance are realized via introducing an oligomer DY-TF as third component. Upon addition of DY-TF, the crystallinity of the host blend is improved and a well-defined morphology with vertical phase separation is formed, yielding an efficiency of 18.23%, which represents the highest efficiency value for 300 nm-thick OSCs thus far.image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据