4.8 Article

Non-Carbon-Dominated Catalyst Architecture Enables Double-High-Energy-Density Lithium-Sulfur Batteries

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202308210

关键词

double-high energy density; lithium-sulfur batteries; macroporous catalytic frameworks; Ni2P/CoP; non-carbon dominated catalysts

向作者/读者索取更多资源

This study reports a new non-carbon-dominated catalytic system using macroporous nickel/cobalt phosphide (NiCoP) as the sulfur host for lithium-sulfur (Li-S) batteries. The catalytic system exhibits high tap density and mechanical hardness, improving the electrochemical reaction kinetics and showing excellent electrochemical performance under high sulfur loading and lean electrolyte conditions.
The commonly used catalyst on carbon architecture as a sulfur host is difficult to jointly achieve high gravimetric and volumetric energy densities for lithium-sulfur (Li-S) batteries due to the contradiction between low tap density/poor catalytic activity of carbon and the easy agglomeration of metal-based compounds without carbon. Here, a non-carbon-dominated catalytic architecture using macroporous nickel/cobalt phosphide (NiCoP) is reported as the sulfur host for Li-S batteries. The macroporous framework, which accommodates a large amount of sulfur, can accelerate the electrochemical reaction kinetics by accelerated e- transport, Li+ diffusion, and superior adsorption and catalytic activity of inherent Ni2P/CoP heterostructures. The high tap density (0.45 g cm(-3)) and mechanically hard features contribute to the excellent structural and physicochemical stability of the NiCoP@S electrode after the pressing and rolling process. These features enable the Li-S coin cell to exhibit excellent electrochemical performance under conditions of high sulfur loading (10.2 mg cm(-2)) and lean electrolyte (electrolyte/sulfur of 2 mu L mg(-1)). Inspiringly, the assembled pouch cell can simultaneously deliver a gravimetric energy density of 345.2 Wh kg(-1) and an impressive volumetric energy density of 952.7 Wh L-1 based on the entire device configuration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据