4.8 Article

Polymeric Giant Unilamellar Vesicles with Integrated DNA-Origami Nanopores: An Efficient Platform for Tuning Bioreaction Dynamics Through Controlled Molecular Diffusion

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202304782

关键词

amphiphilic copolymers; bioreactions; DNA-origami nanopores; giant unilamellar vesicles; microfluidics

向作者/读者索取更多资源

The production, stability, and membrane diffusion properties of polymer GUVs are greatly improved by the introduction of DNA-origami nanopores (DoNs), leading to high control over these essential properties. The DoN-GUVs produced by microfluidics exhibit narrow size distribution, high encapsulation efficiency, and long-term stability, enabling the tuning of molecular transport rates and the investigation of cellular processes and signaling.
Giant unilamellar vesicles (GUVs) are microcompartments serving to confine reactions, allow signaling pathways, or design synthetic cells. Polymer GUVs are composed of copolymer membranes mimicking cell membranes, and present advantages over lipid-based GUVs, such as higher mechanical stability and chemical versatility. Such microcompartments are essential for understanding reactions/signaling occurring in cells, which are difficult to study by in vivo approaches due to the cell's complexity. However, the lack of control over their production, stability, and membrane diffusion properties is still limiting their use for bio-related applications. Here, polymer GUVs produced by microfluidics and permeabilized with DNA-origami nanopores (DoNs) that present a high level of control over these essential properties are introduced. After systematic optimization of conditions, DoN-GUVs reveal a narrow size distribution, allow for high encapsulation efficiencies, and are stable for weeks, protecting encapsulated biomolecules. The kinetics of diffusion of molecules through the GUV's membrane is tuned by insertion of DoNs with a controlled 3D- structure. DNA polymerase I, encapsulated as model for bioreactions, successfully produced DNA duplex strands with spatiotemporal control. DoN-GUVs loaded with active molecules open new avenues in bioreactions, from the detection of biomolecules, over the tuning of molecular transport rates, to the investigation of cellular processes/signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据