4.5 Article

Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges

期刊

MECCANICA
卷 52, 期 10, 页码 2391-2420

出版社

SPRINGER
DOI: 10.1007/s11012-016-0595-8

关键词

Pull-in instability; Viscoelasticity; Microbridge; Microcantilever; Intermolecular forces; Size effect; Modified couple stress theory

向作者/读者索取更多资源

This study investigates the size-dependent quasistatic response of a nonlinear viscoelastic microelectromechanical system (MEMS) under an electric actuation. To have this problem in view, the deformable electrode of the MEMS is modelled using cantilever and doubly-clamped viscoelastic microbeams. The modified couple stress theory in conjunction with Bernoulli-Euler beam theory are used for mathematical modeling of the size-dependent instability of microsystems in the framework of linear viscoelastic theory. Simultaneous effect of electrostatic actuation including fringing field, residual stress, mid-plane stretching and Casimir and van der Waals intermolecular forces are considered in the theoretical model. A single element of the standard linear solid element is used to simulate the viscoelastic behavior. Based on the extended Hamilton's variational principle, the nonlinear governing integro-differential equation and boundary conditions are derived. Thereafter, a new generalized differential-integral quadrature solution for the nonlinear quasistatic response of electrically actuated viscoelastic micro/nanobeams under two different boundary conditions; doubly-clamped microbridge and clamped-free microcantilever. The developed model is verified and a good agreement is obtained. Finally, a comprehensive study is conducted to investigate the effects of various parameters such as material relaxation time, durable modulus, material length scale parameter, Casimir force, van der Waals force, initial gap and beam length on the pull-in response of viscoelastic microbridges and microcantilevers in the framework of viscoelasticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据