4.7 Article

Employing multi-functional SnSe inclusions to boost the thermoelectric performance of the shear-exfoliated Bi2Te2.7Se0.3

期刊

ACTA MATERIALIA
卷 254, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119023

关键词

Thermoelectric; Bi2Te2.7Se0.3; SnSe; Shear exfoliation; Inclusion

向作者/读者索取更多资源

This study utilizes SnSe as multifunctional micro/nanoinclusions to achieve higher thermoelectric performance in polycrystalline BTS. The 2D-structured SnSe reduces the average size of BTS powders and improves the anisotropy of the bulk materials, leading to enhanced carrier mobility and electrical conductivity. Introducing p-type SnSe into n-type BTS enhances the temperature range for high Seebeck coefficients, and the low lattice thermal conductivity of SnSe micro/nanoinclusions suppresses the overall thermal conductivity of the hybrid bulk materials, resulting in competitive figure-of-merit values and great potential for practical applications.
Owing to the high near-room-temperature thermoelectric performance, Bi2Te2.7Se0.3 (BTS)-based semi-conductors have gained significant attention and acted as n-type materials in practical thermoelectric devices. To achieve higher thermoelectric performance in polycrystalline BTS, in this work, we employ SnSe as multifunctional micro/nanoinclusions via co-shear-exfoliating SnSe and BTS ingots and sintering the as-achieved hybrid powders into bulk materials. Experimental results indicate that the 2D-structured SnSe reduces the average size of shear-exfoliated BTS powders, leading to strengthened anisotropy of the as-sintered bulk materials, which can significantly improve the carrier mobility and in turn, the electrical conductivity. As well, introducing p-type SnSe into n-type BTS enhances the bipolar temperature of BTS, leading to higher Seebeck coefficients at higher temperatures, which contributes to a boosted power factor of >32 mu W cm(-1) K-2 at 448 K. Besides, the introduced SnSe micro/nanoinclusions with intrinsic low lattice thermal conductivities suppress the overall thermal conductivity of the hybrid bulk materials by providing denser phase boundaries in the matrix, and in turn strengthen the phonon scattering, which contributes to a competitive figure-of-merit ZT of similar to 1.04 at 448 K and a high average ZT of 0.92, indicating the great potential for applying to practical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据