4.7 Article

The strength of a constrained lithium layer

期刊

ACTA MATERIALIA
卷 260, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119313

关键词

Li -ion battery; Lithium filament; Size effect; Strain gradient plasticity; Creep

向作者/读者索取更多资源

A constrained compression test and simple shear test were conducted to observe the size effect of lithium. The apparent flow strength of lithium increased with decreasing thickness, which is consistent with the results from indentation tests and single pillar compression tests.
A constrained compression test is developed to replicate the mechanical state of a lithium filament within a solid state battery. Lithium microspheres are compressed between parallel quartz plates into a pancake shape of thickness on the order of 15 mu m. Full adhesion with no slip exists between the lithium and platens, and the attendant mechanical constraint implies that the average pressure on the pancake-shaped specimens increases with increasing aspect ratio of radius to height. In addition to mechanical constraint, a thickness-dependant size effect is observed whereby the apparent flow strength of the lithium increases from 0.7 MPa in the bulk to 2.0 MPa at a thickness of 15 mu m. The lithium deforms in a power-law creeping manner at room temperature, and to simplify interpretation of the results, the relative velocity of the loading platens is adjusted to ensure that the true compressive strain rate is held fixed at 10-3 s-1. Additional measurements of lithium flow strength are obtained by subjecting the pancake-shaped specimens to simple shear. The size effect under shear loading is comparable to that in constrained compression. The observed size effect for lithium is consistent with that reported in the literature for lithium in indentation tests and in single pillar compression tests. Finally, the size effect of lithium in the power law creep regime is compared with that for rate-independent plasticity (for copper).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据