4.7 Article

Data-driven optimization of FePt heat-assisted magnetic recording media accelerated by deep learning TEM image segmentation

期刊

ACTA MATERIALIA
卷 255, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119039

关键词

Heat -assisted magnetic recording (HAMR); FePt; Deep learning; Machine learning; Image segmentation

向作者/读者索取更多资源

The main challenge for HAMR to achieve a potential areal density of 4 Tb/in2 is the difficulty in obtaining FePt-X nanogranular media with an ideal stacking structure. In this study, a fully automated routine combining convolutional neural network and machine vision was developed to mine data from transmission electron microscopy images of FePt-C nanogranular media. This allowed the generation of a dataset and implementation of a machine learning optimization model to guide process parameters, resulting in the desired nanostructure successfully validated experimentally. This work demonstrates the potential of data-driven design for high-density HAMR media.
The main bottleneck for heat-assisted magnetic recording (HAMR) to achieve a potential areal density of 4 Tb/ in2 is the difficulty in obtaining FePt-X nanogranular media with an ideal stacking structure of perfectly isolated L10-FePt columnar nanograins. Here, we present a fully automated routine that combines a convolutional neural network and machine vision to enable data mining from transmission electron microscopy images of FePt-C nanogranular media. This allowed us to generate a dataset and implement a machine learning optimization model that guides process parameters to achieve the desired nanostructure, i.e., small grain size with unimodal distribution and a large coercivity, which was successfully validated experimentally. This work demonstrates the promise of data-driven design of high-density HAMR media.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据