4.8 Article

Multimodal E-Textile Enabled by One-Step Maskless Patterning of Femtosecond-Laser-Induced Graphene on Nonwoven, Knit, and Woven Textiles

期刊

ACS NANO
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c04120

关键词

e-textile; wearable electronics; laser-inducedgraphene; direct laser writing; femtosecond laser

向作者/读者索取更多资源

Personal wearable devices are important in advanced healthcare, military, and sports applications. E-textiles are considered the best candidates due to their conformability and ease of manufacturing. This study demonstrates the direct laser writing of e-textiles, converting Kevlar textiles to electrically conductive laser-induced graphene (LIG). Different types of Kevlar textiles are used to fabricate wearable multimodal e-textile sensors and supercapacitors, catering to their specific structural characteristics.
Personal wearable devices are considered important in advanced healthcare, military, and sports applications. Among them, e-textiles are the best candidates because of their intrinsic conformability without any additional device installation. However, e-textile manufacturing to date has a high process complexity and low design flexibility. Here, we report the direct laser writing of e-textiles by converting raw Kevlar textiles to electrically conductive laser-induced graphene (LIG) via femtosecond laser pulses in ambient air. The resulting LIG has high electrical conductivity and chemical reliability with a low sheet resistance of 2.86 O/?. Wearable multimodal e-textile sensors and supercapacitors are realized on different types of Kevlar textiles, including nonwoven, knit, and woven structures, by considering their structural textile characteristics. The nonwoven textile exhibits high mechanical stability, making it suitable for applications in temperature sensors and micro-supercapacitors. On the other hand, the knit textile possesses inherent spring-like stretchability, enabling its use in the fabrication of strain sensors for human motion detection. Additionally, the woven textile offers special sensitive pressure-sensing networks between the warp and weft parts, making it suitable for the fabrication of bending sensors used in detecting human voices. This direct laser synthesis of arbitrarily patterned LIGs from various textile structures could result in the facile realization of wearable electronic sensors and energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据