4.8 Article

Charge Polarity Control in Organic Transistors of Mixed and Segregated Complexes Based on Diaminonaphthalene and Pyrene

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 15, 期 38, 页码 45201-45211

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c10583

关键词

organic transistors; charge-transfer complex; ambipolar transistor; mixed stack; single-crystaltransistors

向作者/读者索取更多资源

This study focuses on the organic cocrystals of diaminonaphthalene (DAN) and diaminopyrene (DAP) with bromanil (BA) and tetracyanoquinodimethane (TCNQ), and explores the role of orbital symmetry in controlling the charge-transport process. The results show that the orbital symmetry plays a crucial role in determining the carrier charge polarity in transistors.
Organic cocrystals of diaminonaphthalene (DAN) and diaminopyrene (DAP) with bromanil (BA) and tetracyanoquinodimethane (TCNQ) are an exemplar system for understanding the charge-transport process, where from the viewpoint of partition theory, orbital symmetry plays a crucial role in controlling the carrier charge polarity of transistors. In the mixed-stack complexes of BA and other p-quinone acceptors, a comparatively weak donor, 1,5-DAN, shows p-channel characteristics owing to the counteractive contribution of the next highest occupied molecular orbital for electron transport. This characteristic behavior occurs because the BA molecule, situated on top of the amino group, overlaps with half of the DAN molecule. By contrast, the BA and TCNQ complexes of a stronger donor, 1,6-DAP, exhibit n-channel transport due to the cooperative path and orthogonal orbitals. Similarly, TCNQ complexes of variously substituted DAN show n-channel transport, where the TCNQ molecules are located on top of the DAN molecules. However, when the carbon electrodes of (1,5-DAN)(BA) are replaced by silver, electron transport appears due to the competitive effect of the Schottky barriers. In a highly conducting segregated complex of (1,6-DAP)(TCNQ), ambipolar transistor characteristics are observed without subtracting the bulk current by using carefully prepared thin-film transistors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据