4.8 Review

Nanostructured Porous Polymer with Low Volume Expansion, Structural Distortion, and Gradual Activation for High and Durable Lithium Storage

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c11111

关键词

Lithium-ion batteries; organic battery materials; gradual activation process; in situ TEM; molecular-structuraldistortion

向作者/读者索取更多资源

Organic compounds have great potential as electrode materials for rechargeable batteries, but their inherent defects limit their cycling life and capacity. nanostructured porous polymers (NPP) have been designed and prepared to overcome these limitations, showing superior lithium storage performance.
Organic compounds exhibit great potential as sustainable, tailorable, and environmentally friendly electrode materials for rechargeable batteries. However, the intrinsic defects of organic electrodes, including solubility, low ionic conductivity, and restricted electroactivity sites, will inevitably decrease the cycling life and capacity. We herein designed and prepared nanostructured porous polymers (NPP) with a simple one-pot method to overcome the above defects. Theoretical calculations and experimental results demonstrate that the as-synthesized NPP exhibited low volume expansion, molecular-structural distortion, and a gradual function activation process during cycling, thus exhibiting superior, high, and durable lithium storage. The gradual molecular distortion during the lithium storage processes provides more redox-active sites for Li storage, increasing the Li-storage capacity. Ex situ spectrum studies reveal the redox reaction mechanism of Li storage and demonstrate a gradual activation process during the repeated charging/discharging until the full storage of 18 Li ions is achieved. Additionally, a real-time observation on the NPP anode by in situ transmission electron microscope reveals a slight volume expansion during the repeating lithiation and delithiation processes, ensuring its structural integrity during cycling. This quantitative work for high-durability lithium storage could be of immediate benefit for designing organic electrode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据