4.8 Article

Facile and Stable CuInO2 Nanoparticles for Efficient Electrochemical CO2 Reduction

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 15, 期 40, 页码 47135-47144

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c11342

关键词

electrochemical CO2 reduction reaction; electrocatalysts; CuInO2 nanoparticles; first-principles calculations; hydrogen evolution reaction

向作者/读者索取更多资源

In this study, a Cu-CuInO2 composite catalyst was designed for electrochemical CO2 reduction reaction (e-CO2RR). The catalyst exhibited high selectivity and stability, attributed to the CuInO2 nanoparticles. Experimental and theoretical results confirmed that CuInO2 nanoparticles offer a facile catalyst for e-CO2RR with high selectivity and stability.
Searching for electrocatalysts for the electrochemical CO(2 )reduction reaction (e-CO2RR) with high selectivity and stability remains a significant challenge. In this study, we design a Cu-CuInO2 composite with stable states of Cu-0/Cu+ by electrochemically depositing indium onto CuCl-decorated Cu foil. The catalyst displays superior selectivity toward the CO product, with a maximal Faraday efficiency of 89% at -0.9 V vs the reversible hydrogen electrode, and maintains impressive stability up to 27 h with a retention rate of >76% in Faraday efficiency. Our systematical characterizations reveal that the catalyst's high performance is attributed to CuInO2 nanoparticles. First-principles calculations further confirm that CuInO2(012) is more conducive to CO generation than Cu(111) under applied potential and presents a higher energy barrier than Cu(111) for the hydrogen evolution reaction. These theoretical predictions are consistent with our experimental observations, suggesting that CuInO2 nanoparticles offer a facile catalyst with a high selectivity and stability for e-CO2RR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据