4.7 Article

Differential Operators on Sketches via Alpha Contours

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 42, 期 4, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3592420

关键词

vector graphics; sketch processing; differential operators

向作者/读者索取更多资源

A vector sketch is a popular and natural geometry representation of a 2D shape, and the positive and negative spaces are key elements that define the shape. However, the notion of positive or negative space is mathematically ambiguous in vector sketches. In this study, a robust algorithm called Alpha Contours is proposed to construct a conservative estimate of the sketch shape, enabling the application of classical methods on vector sketches.
A vector sketch is a popular and natural geometry representation depicting a 2D shape. When viewed from afar, the disconnected vector strokes of a sketch and the empty space around them visually merge into positive space and negative space, respectively. Positive and negative spaces are the key elements in the composition of a sketch and define what we perceive as the shape. Nevertheless, the notion of positive or negative space is mathematically ambiguous: While the strokes unambiguously indicate the interior or boundary of a 2D shape, the empty space may or may not belong to the shape's exterior. For standard discrete geometry representations, such as meshes or point clouds, some of the most robust pipelines rely on discretizations of differential operators, such as Laplace-Beltrami. Such discretizations are not available for vector sketches; defining them may enable numerous applications of classical methods on vector sketches. However, to do so, one needs to define the positive space of a vector sketch, or the sketch shape. Even though extracting this 2D sketch shape is mathematically ambiguous, we propose a robust algorithm, Alpha Contours, constructing its conservative estimate: a 2D shape containing all the input strokes, which lie in its interior or on its boundary, and aligning tightly to a sketch. This allows us to define popular differential operators on vector sketches, such as Laplacian and Steklov operators. We demonstrate that our construction enables robust tools for vector sketches, such as As-Rigid-As-Possible sketch deformation and functional maps between sketches, as well as solving partial differential equations on a vector sketch.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据