4.7 Article

Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 42, 期 4, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3592398

关键词

Monte Carlo methods; walk on spheres

向作者/读者索取更多资源

Grid-free Monte Carlo methods based on the walk on spheres (WoS) algorithm can solve fundamental partial differential equations without discretizing the problem domain. We introduce the walk on stars (WoSt) algorithm, which can solve linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions.
Grid-free Monte Carlo methods based on the walk on spheres (WoS) algorithm solve fundamental partial differential equations (PDEs) like the Poisson equation without discretizing the problem domain or approximating functions in a finite basis. Such methods hence avoid aliasing in the solution, and evade the many challenges of mesh generation. Yet for problems with complex geometry, practical grid-free methods have been largely limited to basic Dirichlet boundary conditions. We introduce the walk on stars (WoSt) algorithm, which solves linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions. The key insight is that one can efficiently simulate reflecting Brownian motion (which models Neumann conditions) by replacing the balls used by WoS with star-shaped domains. We identify such domains via the closest point on the visibility silhouette, by simply augmenting a standard bounding volume hierarchy with normal information. Overall, WoSt is an easy modification of WoS, and retains the many attractive features of grid-free Monte Carlo methods such as progressive and view-dependent evaluation, trivial parallelization, and sublinear scaling to increasing geometric detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据