4.8 Review

Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles

期刊

ADVANCED FIBER MATERIALS
卷 5, 期 4, 页码 1105-1140

出版社

SPRINGERNATURE
DOI: 10.1007/s42765-023-00267-7

关键词

Thermoelectric; Fiber; Material; Device; Textile

向作者/读者索取更多资源

With the development of IoT technology, wearable electronics have brought significant changes to our lives. The demand for low power consumption and mini-type power systems for wearable electronics is more urgent than ever. Thermoelectric materials are ideal candidates for wearable power systems as they can efficiently convert temperature difference into electrical energy without mechanical components. This review comprehensively introduces the complete process from thermoelectric materials to single-fiber/yarn devices to thermoelectric textiles, summarizing strategies for enhancing thermoelectric performance, processing techniques for fiber devices, and applications of thermoelectric textiles. Additionally, challenges and future prospects in the field are discussed.
With the development and prosperity of Internet of Things (IoT) technology, wearable electronics have brought fresh changes to our lives. The demands for low power consumption and mini-type wearable power systems for wearable electronics are more urgent than ever. Thermoelectric materials can efficiently convert the temperature difference between body and environment into electrical energy without the need for mechanical components, making them one of the ideal candidates for wearable power systems. In recent years, a variety of high-performance thermoelectric materials and processes for the preparation of large-scale single-fiber devices have emerged, driving the application of flexible fiber-based thermoelectric generators. By weaving thermoelectric fibers into a textile that conforms to human skin, it can achieve stable operation for long periods even when the human body is in motion. In this review, the complete process from thermoelectric materials to single-fiber/yarn devices to thermoelectric textiles is introduced comprehensively. Strategies for enhancing thermoelectric performance, processing techniques for fiber devices, and the wide applications of thermoelectric textiles are summarized. In addition, the challenges of ductile thermoelectric materials, system integration, and specifications are discussed, and the relevant developments in this field are prospected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据