4.5 Article

Lucas-Kanade fluid trajectories for time-resolved PIV

期刊

MEASUREMENT SCIENCE AND TECHNOLOGY
卷 27, 期 8, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/27/8/084004

关键词

particle image velocimetry; time-resolved; algorithm; peak-locking; round jet

资金

  1. French Direction generale de l'armement (DGA)

向作者/读者索取更多资源

We introduce a new method for estimating fluid trajectories in time-resolved PIV. It relies on a Lucas-Kanade paradigm and consists in a simple and direct extension of a two-frame estimation with FOLKI-PIV (Champagnat et al 2011 Exp. Fluids 50 1169-82). The so-called Lucas-Kanade Fluid Trajectories (LKFT) are assumed to be polynomial in time, and are found as the minimizer of a global functional, in which displacements are sought so as to match the intensities of a series of images pairs in the sequence, in the least-squares sense. All pairs involve the central image, similar to other recent time-resolved approaches (FTC (Lynch and Scarano 2013 Meas. Sci. Technol. 24 035305) and FTEE (Jeon et al 2014 Exp. Fluids 55 1-16)). As switching from a two-frame to a time-resolved objective simply amounts to adding terms in a functional, no significant additional algorithmic element is required. Similar to FOLKI-PIV the method is very well suited for GPU acceleration, which is an important feature as computational complexity increases with the image sequence size. Tests on synthetic data exhibiting peak-locking show that increasing the image sequence size strongly reduces both associated bias and random error, and that LKFT has a remaining total error comparable to that of FTEE on this case. Results on case B of the third PIV challenge (Stanislas et al 2008 Exp. Fluids 45 27-71) also show its ability to drastically reduce the error in situations with low signal-to-noise ratio. These results are finally confirmed on experimental images acquired in the near-field of a low Reynolds number jet. Strong reductions in peak-locking, spatial and temporal noise compared to two-frame estimation are also observed, on the displacement components themselves, as well as on spatial or temporal derivatives, such as vorticity and material acceleration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据