4.6 Article

Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa

期刊

MATRIX BIOLOGY
卷 56, 期 -, 页码 132-149

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matbio.2016.06.003

关键词

Extracellular matrix protein; Fibulin-4; Mutations; Elastogenesis; Matrix assembly; Protein folding

资金

  1. Deutsche Forschungsgemainschaft [SA1003/3-1]
  2. Japanese Ministry of Education, Culture, Sports, Science, and Technology [26461661]
  3. Grants-in-Aid for Scientific Research [26461661, 15K15082, 16K18478, 15H04321] Funding Source: KAKEN

向作者/读者索取更多资源

Fibulin-4 is a 60 kDa calcium binding glycoprotein that has an important role in development and integrity of extracellular matrices. It interacts with elastin, fibrillin-1 and collagen IV as well as with lysyl oxidases and is involved in elastogenesis and cross-link formation. To date, several mutations in the fibulin-4 gene (FBLN4/EFEMP2) are known in patients whose major symptoms are vascular deformities, aneurysm, cutis laxa, joint laxity, or arachnodactyly. The pathogenetic mechanisms how these mutations translate into the clinical phenotype are, however, poorly understood. In order to elucidate these mechanisms, we expressed fibulin-4 mutants recombinantly in HEK293 cells, purified the proteins in native forms and analyzed alterations in protein synthesis, secretion, matrix assembly, and interaction with other proteins in relation to wild type fibulin-4. Our studies show that different mutations affect these properties in multiple ways, resulting in fibulin-4 deficiency and/or impaired ability to form elastic fibers. The substitutions E126K and C267Y impaired secretion of the protein, but not mRNA synthesis. Furthermore, the E126K mutant showed less resistance to proteases, reduced binding to collagen IV and fibrillin-1, as well as to LTBP1s and LTBP4s. The A397T mutation introduced an extra O-glycosylation site and deleted binding to LTBP1s. We show that fibulin-4 binds stronger than fibulin-3 and -5 to LTBP1s, 3, and 4s, and to the lysyl oxidases LOX and LOXL1; the binding of fibulin-4 to the LOX propeptide was strongly reduced by the mutation E57K. These findings show that different mutations in the fibulin-4 gene result in different molecular defects affecting secretion rates, protein stability, LOX-induced cross-linking, or binding to other ECM components and molecules of the TGF-13 pathway, and thus illustrate the complex role of fibulin-4 in connective tissue assembly. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据