4.0 Article

Dissolution rate variability at carbonate surfaces: 4D X-ray micro-tomography and stochastic modeling investigations

期刊

FRONTIERS IN WATER
卷 5, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/frwa.2023.1185608

关键词

carbonate dissolution; X-ray micro-tomography; dissolution rate distribution; rate mapping; stochastic modeling

向作者/读者索取更多资源

Using time-lapse X-ray micro-tomography, this study provides a detailed 3D characterization of the geometry evolution and dissolution rate mapping of four carbonate samples at pH 4.0. The dissolution rates exhibit a large spatial variability, with crystal edges and convex topographies showing the highest rates and flat surfaces and concave areas showing slower retreat. Microcrystalline aragonite dissolves at a higher rate compared to calcite, and rough microcrystalline calcite surface dissolves more slowly than specific faces of calcite spar crystal. The presence of mineral impurities and the geometry of the crystals and fluid-mineral interface affect the global dissolution process of carbonate rocks.
We provide a detailed 3D characterization of the geometry evolution and dissolution rate mapping at the surface of four carbonate samples, namely a calcite spar crystal, two limestone rock fragments, and an aragonite ooid, using time-lapse X-ray micro-tomography during dissolution experiments at pH 4.0. Evaluation of the retreat and mapping of the reaction rates at the whole surface of the samples reveals a large spatial variability in the dissolution rates, reflecting the composition and the specific contributions of the different regions of the samples. While crystal edges and convex topographies record the highest dissolution rates, the retreat is slower for flat surfaces and in topographic lows (i.e., concave areas), suggesting surface-energy related and/or diffusion-limited reactions. Microcrystalline aragonite has the highest rate of dissolution compared to calcite. Surprisingly, rough microcrystalline calcite surface dissolves globally more slowly than the {1014} faces of the calcite spar crystal. The presence of mineral impurities in rocks, through the development of a rough interface that may affect the transport of species across the surface, may explain the slight decrease in reactivity with time. Finally, a macroscopic stochastic model using the set of detachment probabilities at corner, edge, and face (terrace) sites obtained from kinetic Monte Carlo simulations is applied at the spar crystal scale to account for the effect of site coordination onto reactivity. Application of the model to the three other carbonate samples is discussed regarding their geometry and composition. The results suggest that the global dissolution process of carbonate rocks does not reflect only the individual behavior of their forming minerals, but also the geometry of the crystals and the shape of the fluid-mineral interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据