4.0 Article

Influence of Ambient Temperature and Crystalline Structure on Fracture Toughness and Production of Thermoplastic by Enclosure FDM 3D Printer

出版社

MDPI
DOI: 10.3390/jmmp7010044

关键词

ambient temperature; crystallinity; molecular entanglement; interlayer adhesion; fracture toughness

向作者/读者索取更多资源

This research studied the effects of ambient temperatures and crystalline structure on the interlayer adhesion and properties of thermoplastic FDM 3D printing. It was found that increasing the ambient temperature significantly improved interlayer bonding. In addition, PLA filament with high crystallinity has induced heat resistance and can successfully print at higher chamber temperatures.
Fused deposition modeling (FDM) 3D printing has printed thermoplastic materials layer-by-layer to form three dimensional products whereby interlayer adhesion must be well controlled to obtain high mechanical performance and product integrity. This research studied the effects of ambient temperatures and crystalline structure on the interlayer adhesion and properties of thermoplastic FDM 3D printing. Five kinds of poly(lactic acid) (PLA) filaments, both commercially available and the laboratory-made, were printed using the enclosure FDM 3D printer. The ambient temperatures were set by the temperature-controlled chamber from room temperature to 75 degrees C with and without a cooling fan. The interlayer adhesion was characterized by the degree of entanglement density, morphology, and fracture toughness. In addition, PLA filament with high crystallinity has induced heat resistance, which could prevent filament clogging and successfully print at higher chamber temperatures. The ambient temperature increased with increased chamber temperature and significantly increased when printed without a cooling fan, resulting in improved interlayer bonding. The crystalline structure and dynamic mechanical properties of the 3D printed products were promoted when the chamber temperature was increased without a cooling fan, especially in PLA composites and PLA containing a high content of L-isomer. However, although the additives in the PLA composite improved crystallinity and the degree of entanglement density in the 3D-printed products, they induced an anisotropic characteristic that resulted in the declination of the interlayer bonding in the transverse orientation products. The increasing of chamber temperatures over 40 degrees C improved the interlayer bonding in pristine PLA products, which was informed by the increased fracture toughness. Further, it can be noted that the amorphous nature of PLA promotes molecular entanglement, especially when printed at higher chamber temperatures with and without a cooling fan.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据