4.2 Article

Healing Wounds Efficiently with Biomimetic Soft Matter: Injectable Self-Healing Neutral Glycol Chitosan/Dibenzaldehyde-Terminated Poly(ethylene glycol) Hydrogel with Inherent Antibacterial Properties

期刊

ACS APPLIED BIO MATERIALS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.2c00859

关键词

glycol chitosan; Schiff base; self-healing; zebrafish; wound healing

向作者/读者索取更多资源

The high prevalence of skin wounds and antibiotic-resistant strains pose a threat to society. Hydrogels, specifically the glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogels (GC/DP), were developed and found to have self-healing abilities and inhibitory effects against E. coli, P. aeruginosa, and S. aureus. In zebrafish embryo models, GC/DP hydrogels showed high biocompatibility and a significant wound contraction rate. This study is the first to develop injectable hydrogels for wound healing with innate bacteriostatic properties against these three bacteria.
The high prevalence of acquiring skin wounds, along with the emergence of antibiotic-resistant strains that lead to infections, impose a threat to the physical, mental, and socioeconomic health of society. Among the wide array of wound dressings developed, hydrogels are regarded as a biomimetic soft matter of choice owing to their ability to provide a moist environment ideal for healing. Herein, neutral glycol chitosan (GC) was cross-linked via imine bonds with varying concentrations of dibenzaldehyde-terminated polyethylene glycol (DP) to give glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogels (GC/DP). These dynamic Schiff base linkages (absorption peak at 1638 cm-1) within the hydrogel structure endowed their ability to recover from damage as characterized by high-low strain exposure in continuous step strain rheology. Along with their good injectability and biodegradability, the hydrogels exhibited remarkable inhibition against E. coli, P. aeruginosa, and S. aureus. GC/DP hydrogels demonstrated high LC50 values in vivo using zebrafish embryos as a model system due to their relative biocompatibility and a remarkable 93.4 +/- 0.88% wound contraction at 30-dpw against 49.1 +/- 3.40% of the control. To the best of our knowledge, this is the first study that developed injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol self-healing hydrogels for application in wound healing with intrinsic bacteriostatic properties against the three bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据