4.1 Article

Influence of the Thermal Treatment on the Structure and Cycle Life of Copper Hexacyanoferrate for Aqueous Zinc-Ion Batteries

期刊

BATTERIES-BASEL
卷 9, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/batteries9030170

关键词

aqueous zinc-ion batteries (ZIBs); copper hexacyanoferrate (CuHCF); cycle life; Prussian blue analogues (PBAs); thermal treatment

向作者/读者索取更多资源

Copper hexacyanoferrate (CuHCF) has emerged as a promising positive electrode material for aqueous zinc-ion batteries due to its high reversibility towards Zn2+ (de-)insertion, cost-effective synthesis, low toxicity, and high working potential. The impact of synthesis parameters on CuHCF's electrochemical performance and cycle life needs further exploration.
Copper hexacyanoferrate (CuHCF) has become an attractive Zn2+ insertion material as a positive electrode in aqueous zinc-ion batteries thanks to its high reversibility towards Zn2+ (de-)insertion, its simple, inexpensive and easily scalable synthesis route, its low toxicity, and its high working potential. It is known that the physiochemical properties of CuHCF can be modified by manipulating its synthesis parameters. However, the effect of these parameters on the material's electrochemical performance and cycle life needs further investigation. Here, the structure and composition of CuHCF treated at different temperatures are studied through crystallographic, compositional, and thermogravimetric analyses. The resulting CuHCF powders were galvanostatically cycled to assess their electrochemical performance in relation to their annealing temperature. The results showed that the annealed CuHCF electrodes exhibited longer cycle life while maintaining a coulombic efficiency >= 99.5%. The longest cycle life was achieved by annealing the CuHCF electrodes at 100 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据