4.3 Article

Preliminary Study of the Bactericide Properties of Biodegradable Polymers (PLA) with Metal Additives for 3D Printing Applications

期刊

BIOENGINEERING-BASEL
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/bioengineering10030297

关键词

anti-bacterial agents; polymer; PLA; 3D print; protective materials; Listeria monocytogenes; E; coli; industrial process

向作者/读者索取更多资源

The study aims to develop bactericidal plastics that reduce the risk of bacterial colonization and infection. Researchers used polylactic acid as the matrix and added silver ions at different concentrations to manufacture antibacterial materials on an industrial scale. The effectiveness of additive R148 at a concentration of 2% was demonstrated throughout the manufacturing process, showing potential application in medicine.
Plastic is a highly used material in various sectors. Due to its plentiful availability in the environment, microorganism surface contamination is a risk. The aim of this work is to achieve bactericidal capacity in plastics that reduces the microorganism's colonization risk and, consequently, reduces the chances of having an infection with E. coli and Listeria monocytogenes bacteria. Using polylactic acid (PLA) as the polymeric matrix, mixtures in concentrations of metal additive of ions of silver (Ag) R148 and S254 in 1% and 2% have been studied and manufactured. The materials are developed on an industrial scale through a process that proceeds as follows: (I) a mixture of polymer and additive in a double-screw compounder to obtain the compound in different concentrations, (II) the manufacture of filaments with a single-screw extruder, (III) 3D printing parts. Therefore, materials are evaluated in the form of powder, pellets and printed pieces to ensure their antibacterial effectiveness throughout the manufacturing process. The results of the research show antibacterial effectiveness for E. coli and Listeria monocytogenes of metal additives and polymeric compounds for all manufacturing phases on an industrial scale, with the effectiveness for additive R148 predominating at a concentration of 2%, demonstrating its microbial efficacy on surfaces with potential application in medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据