4.3 Article

Oxygen-Ion and Proton Transport of Origin and Ca-Doped La2ZnNdO5.5 Materials

期刊

INORGANICS
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/inorganics11050196

关键词

rare earth oxides; oxygen-ion conductivity; proton conductivity; hydrogen energy

向作者/读者索取更多资源

Oxygen-ionic and proton-conducting oxides, including La2ZnNdO5.5 and its Ca-doped derivatives, were synthesized. These materials were characterized for their phase composition, lattice parameters, and hydration capability. The conductivities of the samples were measured in dry and wet air, showing a significant increase in conductivity due to oxygen vacancies during acceptor doping. The Ca-doped phases also exhibited proton-conducting properties.
Oxygen-ionic and proton-conducting oxides are widely studied materials for their application in various electrochemical devices such as solid oxide fuel cells and electrolyzers. Rare earth oxides are known as a class of ionic conductors. In this paper, La2ZnNdO5.5 and its Ca-doped derivatives La2Nd0.9Ca0.1ZnO5.45 and La2ZnNd0.9Ca0.1O5.45 were obtained by a solid-state reaction route. Phase composition, lattice parameters, and hydration capability were investigated by X-ray diffraction and thermogravimetric analyses. The conductivities of these materials were measured by the electrochemical impedance spectroscopy technique in dry (pH(2)O = 3.5 x 10(-5) atm) and wet (pH(2)O = 2 x 10(-2) atm) air. All phases crystallized in a trigonal symmetry with P3m1 space group. The conductivity difference between undoped and calcium-doped samples is more than two orders of magnitude due to the appearance of oxygen vacancies during acceptor doping, which are responsible for a higher ionic conductivity. The La2Nd0.9Ca0.1ZnO5.45 sample shows the highest conductivity of about 10(-3) S & BULL;cm(-1) at 650 ? The Ca-doped phases are capable of reversible water uptake, confirming their proton-conducting nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据