4.4 Review

Effects of Hyperlipidemia on Osseointegration of Dental Implants and Its Strategies

期刊

JOURNAL OF FUNCTIONAL BIOMATERIALS
卷 14, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/jfb14040194

关键词

hyperlipidemia; dental implantation; osseointegration; surface modification; statins

向作者/读者索取更多资源

Hyperlipidemia affects bone metabolism and inhibits osseointegration of dental implants. This review summarizes the effects of hyperlipidemia on dental implants and addresses potential strategies to improve osseointegration in a hyperlipidemic environment. Topical drug delivery methods, including local drug injection, implant surface modification, and bone-grafting material modification, are discussed.
Hyperlipidemia refers to the abnormal increase in plasma lipid level exceeding the normal range. At present, a large number of patients require dental implantation. However, hyperlipidemia affects bone metabolism, promotes bone loss, and inhibits the osseointegration of dental implants through the mutual regulation of adipocytes, osteoblasts, and osteoclasts. This review summarized the effects of hyperlipidemia on dental implants and addressed the potential strategies of dental implants to promote osseointegration in a hyperlipidemic environment and to improve the success rate of dental implants in patients with hyperlipidemia. We summarized topical drug delivery methods to solve the interference of hyperlipidemia in osseointegration, which were local drug injection, implant surface modification and bone-grafting material modification. Statins are the most effective drugs in the treatment of hyperlipidemia, and they also encourage bone formation. Statins have been used in these three methods and have been found to be positive in promoting osseointegration. Directly coating simvastatin on the rough surface of the implant can effectively promote osseointegration of the implant in a hyperlipidemic environment. However, the delivery method of this drug is not efficient. Recently, a variety of efficient methods of simvastatin delivery, such as hydrogels and nanoparticles, have been developed to boost bone formation, but few of them were applied to dental implants. Applicating these drug delivery systems using the three aforementioned ways, according to the mechanical and biological properties of materials, could be promising ways to promote osseointegration under hyperlipidemic conditions. However, more research is needed to confirm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据