4.7 Article

The stability of retained austenite at different locations during straining of I&Q&P steel

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2016.06.044

关键词

Transformation; Retained austenite; Intercritical heating, quenching and partitioning (I&Q&P); Trip effect

资金

  1. National Natural Science Foundation of China, Beijing, China [51474030]

向作者/读者索取更多资源

This paper presents a detailed investigation of the transformation behavior of retained austenite at different locations of intercritical heating, quenching and partitioning (I&Q&P) steel. The consumption of retained austenite at different strains is investigated by X-ray diffraction (XRD). Results indicate that retained austenite can transform into martensite progressively during the whole deformation process, which is in favor of a good combination of strength and ductility, contributing to a high product of strength and elongation (PSE) of 31.9 GPa%. The transformation characteristics of retained austenite at different locations after different strains are characterized by electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). Results show that the transformation preferentially occurs in the retained austenite at ferrite grain boundaries, subsequently the one within ferrite grains (at 10% strain) and eventually the one between martensite laths (at 15% strain). In FCC phase, the average local misorientations are 0.547 degrees and 0.674 degrees at 5% and 10% strain, respectively; however, the values are not more than 0.7 degrees at 15% and 20% strain due to the TRIP effect. For the retained austenite within ferrite grains, the interior part preferentially transforms into twin martensite, while the interface still remains due to alloying elements segregation. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据