3.8 Article

Analytical and Numerical Solutions for Three-Dimensional Granular Collapses

期刊

GEOSCIENCES
卷 13, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/geosciences13040119

关键词

granular collapse; GPU computing; generalised interpolation material point method; large deformation

向作者/读者索取更多资源

This research paper presents a comprehensive approach to investigating dry granular collapses in three dimensions, by combining analytical, numerical, and experimental methods. The experimental investigation utilised a novel apparatus to study granular collapses in the laboratory. It is demonstrated that a quasistatic understanding of granular collapses can accurately predict the final normalised run-out distances for dynamic granular collapses. Our approach involved establishing a correlation between the angle of repose and the initial aspect ratio of the granular column. It is also shown that the material point method (MPM) is suitable for modelling granular collapses in three dimensions. Our in-house solver was further validated using experimental evidence under an explicit formulation, resulting in good agreement between the numerical and experimental results. The findings demonstrate the effectiveness of our in-house solver for three-dimensional granular collapse modelling.
This research paper presents a comprehensive approach to investigating dry granular collapses in three dimensions, by combining analytical, numerical, and experimental methods. The experimental investigation utilised a novel apparatus to study granular collapses in the laboratory. It is demonstrated that a quasistatic understanding of granular collapses can accurately predict the final normalised run-out distances for dynamic granular collapses. Our approach involved establishing a correlation between the angle of repose and the initial aspect ratio of the granular column. It is also shown that the material point method (MPM) is suitable for modelling granular collapses in three dimensions. Our in-house solver was further validated using experimental evidence under an explicit formulation, resulting in good agreement between the numerical and experimental results. The findings demonstrate the effectiveness of our in-house solver for three-dimensional granular collapse modelling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据