4.7 Article

Nanoindentation of gold and gold alloys by molecular dynamics simulation

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2015.10.081

关键词

Molecular dynamics; Nanoindentation; Hardness; Stacking fault energy

资金

  1. Seagate Technology
  2. Air Force Office of Scientific Research [FA9550-12-1-0456]

向作者/读者索取更多资源

The nanoindentation hardnesses and stacking fault energies (SFE) for pure and alloyed Au are determined from classical molecular dynamics simulations. Rather than a traditional force-displacement dependence that is examined in many previous nanoindentation works, we analyze the hardness vs. force in this study, which shows features that allow us to distinguish defect nucleation processes from hardening processes. During nanoindentation, homogeneously nucleated defects interact to form V-shape lock structures, and finally form four-sided dislocations that are continuously released into the bulk, in a manner similar to the heterogeneous Frank-Read dislocation generation mechanism. Hardness in the alloy system is predicted to be critically controlled by the ease and frequency of nucleation of new defects. Consistent with previous simulation results, the difference of the unstable and stable SFE, rather than the stable SFE along, is found to be closely related to this nucleation process, and thus to hardness. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据