4.7 Article

Traction-separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2015.10.042

关键词

Hydrogen embrittlement; Grain boundaries; Fracture; Molecular dynamics

资金

  1. Laboratory Directed Research and Development program at Sandia National Laboratories
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
  3. National Science Foundation [0722625, 0959124, 0918970]

向作者/读者索取更多资源

A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Sigma 3(112)[1 (1) over bar0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction-separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction-separation relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Sigma 3(112)[1 (1) over bar0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction-separation relationship. The present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据