4.3 Article

A composited PEG-silk hydrogel combining with polymeric particles delivering rhBMP-2 for bone regeneration

出版社

ELSEVIER
DOI: 10.1016/j.msec.2016.04.043

关键词

Hydrogel; Bio-composite; BMP-2 sustained release; Bone regeneration

资金

  1. National Nature Science Foundation of China [81271696]

向作者/读者索取更多资源

Given the fabulous potential of promoting bone regeneration, BMP-2 has been investigated widely in the bone tissue engineering field. A sophisticated biomaterial loaded with BMP-2, which could avoid the required supraphysiological dose leading to high medical costs and risks of complications, has been considered as a promising strategy to treat non-healing bone defects. In this study, we developed a simple approach to engineer a composited hydrogel consisting polymeric particles (PLA/PLGA) used as a BMP-2 delivery vehicle. Compared with other groups, the introduction of PLA into PEG-silk gels endowed the hydrogel new physicochemical characteristics especially hydrophobicity which inhibited the burst release of BMP-2 and enhanced gel's structural stability. Moreover, such composited gels could stabilize entrapped proteins and maintain their bioactivity fully in vitro. In vivo, the bio-degradability experiment demonstrated this system was biocompatible and the reinforced hydrophobicity significantly decreased degradation rate, and in rat critical-sized cranial defects model, the gel containing PLA promoted the most bone formation. These findings demonstrated the introduction of PLA changed physicochemical features of gels more suitable as a BMP-2 carrier indicated by inducing bone regeneration efficiently in large bone defects at low delivered dose and this system may own translational potential. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据