3.9 Article

Whole-cell patch-clamp recording and parameters

期刊

BIOPHYSICAL REVIEWS
卷 15, 期 2, 页码 257-288

出版社

SPRINGERNATURE
DOI: 10.1007/s12551-023-01055-8

关键词

Capacitance; Channel; Current density; Electrophysiology; Action potential; Optical signal

向作者/读者索取更多资源

The patch-clamp technique is an advanced method in electrophysiology that allows the study of channel activation within cells and their impact on cell function. With proper parameter inference and recording, patch-clamp research yields reliable results.
The patch-clamp technique represents an electrophysiology type of method. This is one of several insightful approaches with five major configurations, namely a loose patch, cell-attached (also known as on-cell), whole-cell, inside-out, and outside-out modes. The patch-clamp method is more advanced compared to classical electrophysiology since it elucidates single-channel activation in a tiny portion of the membrane in addition to action potential (AP), junction potential (JP), endplate potential (EP), electrical coupling between two adjacent cells via Gap junction hemi-channels, excitatory/inhibitory postsynaptic potentials, and resting membrane potential (RMP). In fact, a malfunction of only one channel or even one component will alter AP amplitude or duration in vitro. If parameters are inferred appropriately and recordings are performed properly, the patch-clamp trace readouts and results are robust. The main hallmarks of currents via voltage-dependent calcium (Cav), hyperpolarization-activated cyclic nucleotide gated non-selective cation (HCN), inwardly rectifying potassium (Kir), voltage-dependent potassium (Kv), and voltage-dependent sodium (Nav) channels are similar and tractable among cells even when they are derived from evolutionary distinct organs and species. However, the size of the membrane area, where the functional subunits reside, and current magnitudes vary among cells of the same type. Therefore, dividing current magnitudes by cell capacitance- current density enables the estimate of functional and active channels relative to recorded cytoplasmic membrane area. Since the patch-clamp recordings can be performed in both current- and voltage-clamp modes, the action potential or spike durations can be adequately elucidated. Sometimes, optical methods are preferred to patch-clamp electrophysiology, but the obtained signals and traces are not robust. Finally, not only an alternans of AP durations, but also that of 'action potential shape' is observed with electrophysiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据