4.3 Article

Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts

出版社

ELSEVIER
DOI: 10.1016/j.msec.2016.04.055

关键词

Cell encapsulation; Alginate; Cryostorage; Metabolic activity; Angiogenic activity

资金

  1. Michigan Corporate Relations Network Small Company Innovation Program award [N017271]
  2. University of Michigan Dearborn's Rackham Grants for Faculty Research [U043684]

向作者/读者索取更多资源

Cryopreservation or cryostorage of tissue engineered constructs can enhance the off-the shelf availability of these products and thus can potentially facilitate the commercialization or clinical translation of tissue engineered products. Encapsulation of cells within hydrogel matrices, in particular alginate, is widely used for fabrication of tissue engineered constructs. While previous studies have explored the cryopreservation response of cells encapsulated within alginate matrices, systematic investigation of the impact of alginate concentration on the metabolic activity and functionality of cryopreserved cells is lacking. The objective of the present work is to determine the metabolic and angiogenic activity of cryopreserved human dermal fibroblasts encapsulated within 1.0%, 1.5% and 2.0% (w/v) alginate matrices. In addition, the goal is to compare the efficacy of dimethyl sulfoxide (DMSO) and trehalose as cryoprotectant. Our study revealed that the concentration of alginate plays a significant role in the cryopreservation response of encapsulated cells. The lowest metabolic activity of the cryopreserved cells was observed in 1% alginate microspheres. When higher concentration of alginate was utilized for cell encapsulation, the metabolic and angiogenic activity of the cells frozen in the absence of cryoprotectants was comparable to that observed in the presence of DMSO or trehalose. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据