4.6 Article

Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques

期刊

MATERIALS AND STRUCTURES
卷 49, 期 10, 页码 4319-4334

出版社

SPRINGER
DOI: 10.1617/s11527-015-0790-4

关键词

Neuro fuzzy; Neural network; Multivariate adaptive regression splines; M5 model tree; Fiber-reinforced polymer (FRP); Confined concrete

向作者/读者索取更多资源

This paper studies the ability of artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS), multivariate adaptive regression splines (MARS) and M5 Model Tree (M5Tree) techniques to predict ultimate conditions of fiber-reinforced polymer (FRP)-confined concrete. A large experimental test database that consists of over 1000 axial compression tests results of FRP-confined concrete specimens assembled from the published literature was used to train, test, and validate the models. The modeling results show that the ANN, ANFIS, MARS and M5Tree models fit well with the experimental test data. The M5Tree model performs better than the remaining models in predicting the hoop strain reduction factor and strength enhancement ratio, whereas the ANN model provided the most accurate estimates of the strain enhancement ratio. Performances of the proposed models are also compared with those of the existing conventional and evolutionary algorithm models, which indicate that the proposed ANN, ANFIS, MARS and M5Tree models exhibit improved accuracy over the existing models. The predictions of each proposed model are subsequently used to establish the interdependence of critical parameters and their influence on the behavior of FRP-confined concrete, which are discussed in the paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据