3.8 Article

Hippocampal vulnerability to hyperhomocysteinemia worsens pathological outcomes of mild traumatic brain injury in rats

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/11795735231160025

关键词

traumatic brain injury; rat; oxidative stress; neuronal cell death; electron microscopy

向作者/读者索取更多资源

This study aimed to assess the deleterious impact of hyperhomocysteinemia (HHCY) on mild traumatic brain injury (mTBI)-associated hippocampal pathological changes. The results showed that moderate HHCY exacerbates mTBI-induced hippocampal pathological changes, including increased oxidative stress and working memory deficits. These findings suggest that HHCY is an epigenetic factor that modulates the pathological progression of mTBI in the hippocampus and represents a potential therapeutic target for mitigating disease severity.
BackgroundMild traumatic brain injury (mTBI) generally resolves within weeks. However, 15-30% of patients present persistent pathological and neurobehavioral sequelae that negatively affect their quality of life. Hyperhomocysteinemia (HHCY) is a neurotoxic condition derived from homocysteine accumulation above 15 mu M. HHCY can occur in diverse stressful situations, including those sustained by U.S. active-duty service members on the battlefield or during routine combat practice. Mild-TBI accounts for more than 80% of all TBI cases, and HHCY exists in 5-7% of the general population. We recently reported that moderate HHCY exacerbates mTBI-induced cortical injury pathophysiology, including increased oxidative stress. Several studies have demonstrated hippocampus vulnerability to oxidative stress and its downstream effects on inflammation and cell death.ObjectiveThis study aimed to assess the deleterious impact of HHCY on mTBI-associated hippocampal pathological changes. We tested the hypothesis that moderate HHCY aggravates mTBI-induced hippocampal pathological changes.MethodsHHCY was induced in adult male Sprague-Dawley rats with a high methionine dose. Rats were then subjected to mTBI by controlled cortical impact under sustained HHCY. Blood plasma was assessed for homocysteine levels and brain tissue for markers of oxidative stress, blood-brain barrier integrity, and cell death. Endothelial cell ultrastructure was assessed by Electron Microscopy and working memory performance using the Y maze test.ResultsHHCY increased the hippocampal expression of nitrotyrosine in astroglial cells and decreased tight junction protein occludin levels associated with the enlargement of the endothelial cell nucleus. Furthermore, HHCY altered the expression of apoptosis-regulating proteins alpha-ii spectrin hydrolysis, ERK1/2, and AKT phosphorylation, mirrored by exacerbated mTBI-related hippocampal neuronal loss and working memory deficits.ConclusionOur findings indicate that HHCY is an epigenetic factor that modulates mTBI pathological progression in the hippocampus and represents a putative therapeutic target for mitigating such physiological stressors that increase severity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据