4.5 Article

Grinding of Ti-6Al-4V Under Small Quantity Cooling Lubrication Environment Using Alumina and MWCNT Nanofluids

期刊

MATERIALS AND MANUFACTURING PROCESSES
卷 32, 期 6, 页码 608-615

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2016.1257797

关键词

Chips; force; grinding; microloading; nanofluids; roughness; specific energy; SQCL; Ti-6Al-4V

向作者/读者索取更多资源

Ti-6Al-4V is a difficult-to-grind material as chips tend to adhere to the grit materials of an abrasive wheel due to its chemical affinity. In the present work, it has been attempted to improve the grindability by application of small quantity cooling lubrication (SQCL) technology using nanofluids, namely, multiwalled carbon nanotube (MWCNT) and alumina nanofluid. The suitability of nanofluids was experimentally evaluated in reciprocating surface grinding using a vitrified SiC wheel. Substantial improvement in grindability under the influence of MWCNT nanofluid (SQCL) could be achieved compared to soluble oil (flood). Reduction of specific grinding forces and specific energy was observed due to the combined effect of superior heat dissipation and lubrication abilities; when the latter one was realized through on-site rolling of MWCNT strands, inter-tubular slip and solid lubrication of the film adhered onto the wheel surface. These outperforming characteristics of MWCNT nanofluid helped in retaining grit sharpness superiorly, thus resulting in better surface finish and less re-deposition of metal on the ground workpiece. On the contrary, Al2O3 nanofluid (SQCL) underperformed even soluble oil (flood). For an ageing effect, Al2O3 nanoparticles resulted in abrasive agglomerates, which led to its failure, despite its good heat dissipation capability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据