4.2 Article

Out of breath and hungry: natural tags reveal trophic resilience of Atlantic croaker to hypoxia exposure

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 560, 期 -, 页码 207-221

出版社

INTER-RESEARCH
DOI: 10.3354/meps11934

关键词

Hypoxia; Trophic resilience; Otolith chemistry; Stable isotopes; Gulf of Mexico; Micropogonias undulatus

资金

  1. EPA-STAR fellowship [FP 91748701]

向作者/读者索取更多资源

Seasonal hypoxia may alter trophic relationships between benthic prey and mobile predators if consumers with low hypoxia tolerance are vertically displaced from bottom waters and switch to pelagic prey. Alternatively, consumers with greater hypoxia tolerance may continue to forage on stressed benthic prey. Identifying the trophic effects of hypoxia on mobile fishes requires long-term records of individual exposure histories. Elemental profiles in otoliths of demersal Atlantic croaker Micropogonias undulatus from the northern Gulf of Mexico (nGoM) were used to quantify hypoxia exposure and estuarine occupancy histories over the 2 to 3 mo prior to capture. Elemental patterns in croaker otoliths clustered fish into 4 groups: early or late estuarine migrants and normoxic or hypoxic coastal residents. Stable isotope values of delta C-13 and delta N-15 in croaker muscle were compared between clusters to determine trophic shifts associated with environmental histories, while isotope niche areas of clusters indicated whether trophic shifts were uniform or variable among individuals within each cluster. Estuarine migrants displayed lower delta C-13 and delta N-15 values, indicating greater contribution of terrestrially derived diets, although the relatively larger isotope niche areas for estuarine clusters was consistent with individually variable emigration timings. Coastal normoxic and hypoxic fish both had similar delta C-13 and delta N-15 values, suggesting limited vertical displacement to pelagic food webs in hypoxic fish. These results indicate trophic resilience of demersal croaker to seasonal hypoxia in the nGoM, with no detectable change in trophic dynamics over monthly time scales. This paired natural tag approach further enhances our understanding of sublethal trophic responses to hypoxia and consequences for ecosystem functioning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据