4.3 Article

Nonlinear robust adaptive Cartesian impedance control of UAVs equipped with a robot manipulator

期刊

ADVANCED ROBOTICS
卷 29, 期 3, 页码 171-186

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/01691864.2014.1002529

关键词

Cartesian impedance; robot manipulator; nonlinear robust adaptive control; parametric and non-parametric uncertainties; Unmanned Aerial Vehicle (UAV)

类别

向作者/读者索取更多资源

In this paper, a new nonlinear robust adaptive impedance controller is addressed for Unmanned Aerial Vehicles (UAVs) equipped with a robot manipulator that physically interacts with environment. A UAV equipped with a robot manipulator is a novel system that can perform different tasks instead of human being in dangerous and/or inaccessible environments. The objective of the proposed robust adaptive controller is control of the UAV and its robotic manipulator's end-effector impedance in Cartesian space in order to have a stable physical interaction with environment. The proposed controller is robust against parametric uncertainties in the nonlinear dynamics model of the UAV and the robot manipulator. Moreover, the controller has robustness against the bounded force sensor inaccuracies and bounded unstructured modeling (nonparametric) uncertainties and/or disturbances in the system. Tracking performance and stability of the system are proved via Lyapunov stability theorem. Using simulations on a quadrotor UAV equipped with a three-DOF robot manipulator, the effectiveness of the proposed robust adaptive impedance controller is investigated in the presence of the force sensor error, and parametric and non-parametric uncertainties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据